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The zero-range process is a stochastic interacting particle system that is known to exhibit a condensation
transition. We present a detailed analysis of this transition in the presence of quenched disorder in the particle
interactions. Using rigorous probabilistic arguments, we show that disorder changes the critical exponent in the
interaction strength below which a condensation transition may occur. The local critical densities may exhibit
large fluctuations, and their distribution shows an interesting crossover from exponential to algebraic behavior.
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The zero-range process is a stochastic lattice gas where
the particles hop randomly with an on-site interaction that
makes the jump rate dependent only on the local particle
number. It was introduced in �1� as a mathematical model for
interacting diffusing particles, and since then, has been ap-
plied in a large variety of contexts, often under different
names �see, e.g., �2� and references therein�. The model is
simple enough for the steady state to factorize; on the other
hand, it exhibits an interesting condensation transition under
certain conditions. Viz., when the particle density exceeds a
critical value �c, the system phase separates into a homoge-
neous background with density �c and all the excess mass
concentrates on a single lattice site. This has been observed
and studied in some detail in experiments on shaken granular
media �3,4�, and there is a well-established analogy to Bose-
Einstein condensation �2,5,6�. It is also relevant as a generic
mechanism for phase separation in single-file diffusion �7�
and condensation phenomena in many complex systems such
as network rewiring �8� or traffic flow �9� �for a review see
�2��.

The transition can be caused by site-dependent jump rates
gx �5� due to the slowest site acting as a trap. It also appears
in a more subtle fashion in homogeneous systems where con-
densation may result from the growth of large clusters at the
expense of small clusters if the jump rates g�n� as a function
of the number n of particles on the starting site have a de-
creasing tail. Such a model with a generic power-law decay

g�n� = 1 + b/n�, �1�

with positive interaction parameters b and �, has been intro-
duced in �10�. Condensation occurs if 0���1 and b�0 or
if �=1 and b�2. The condensation transition is understood
also rigorously in the context of the equivalence of en-
sembles �11,12�, and more recently many variants of �1� have
been studied �2,6,13–16�.

All previous studies of zero-range processes assume that
the interaction between particles is strictly equal on all sites.
In this paper we study the effect of disorder on this interac-
tion and show that even a small random perturbation of the

n dependence of the jump rates g�n� leads to a drastic change
in the critical behavior. Namely, for positive b condensation
only occurs for 0���1 /2 �see Fig. 1�, excluding in par-
ticular the frequently studied case �=1. Moreover, the criti-
cal densities are site-dependent random variables with non-
trivial distributions, and depending on the parameter values,
they may exhibit large fluctuations. Due to the wide applica-
bility of the zero-range process, the change of the critical
interaction exponent � is particularly relevant for applica-
tions as is explained later.

We consider a lattice �L, which we take to be periodic
and of finite size ��L�=L. A configuration is denoted by
��x�x�� where �x� �0,1 , . . . � is the occupation number at
site x. The dynamics is defined in continuous time, such that
with rate gx��x� site x��L loses a particle, which moves to
a randomly chosen target site y according to some probabil-
ity distribution p�y−x�. For example, in one dimension with
nearest-neighbor hopping, the particle moves to the right
�left� with probability p �1− p�.

A generic perturbation of the jump rates �1� can be addi-
tive or multiplicative, but since the condensation behavior is
determined only by the tail of the jump rates for large n, both
choices are essentially equivalent. They can be written in a
convenient general way,

gx�n� = eEx�n� for n � 1, g�0� = 0, �2�

where the exponents are given by
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FIG. 1. �Color online� Change of the phase diagram under ran-
dom perturbations of the jump rates �1�. Disorder changes the criti-
cal interaction exponent from 1 to 1 /2 and leads to a critical density
that depends on the system size. Inside the red-shaded region, con-
densation occurs above a nonzero critical density for b�0, and for
b�0 �see �2�� and negative � the critical density is zero.
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Ex�n� = ex�n� + b/n�, b � R, � � 0, �3�

with ex�n� being independent identically distributed random
variables with respect to x and n. Without x dependence this
would amount merely to a change of the function g, which
might be interesting, but is a degenerate problem in terms of
generic perturbations. On the other hand, the effect of spa-
tially inhomogeneous jump rates favoring condensation on
slow sites has already been studied �5�. Therefore we con-
centrate on disorder with spatially uniform mean E(ex�n�)
=0 and variance 	2�0 in order to focus on the basic novelty,
which is the suppressing effect on condensation for a generic
perturbation of �1�. For the same reason we have chosen the
jump probability p�y−x� to be homogeneous, since spatial
dependence there leads to the same effect as spatially inho-
mogeneous jump rates �17�.

Note that for ex�n��0 �i.e., 	=0� the asymptotic behavior
of gx�n� is given by �1�. All data shown in this paper are for
uniform ex�n�	U�−
 ,
�, characterized by 	2=
2 /3. But
our analytical results are of course independent of the distri-
bution of the perturbation as well as the exact form of the
jump rates �2�. For negative � the rates �2� are increasing in
n for positive b and hence there is no condensation. For
negative b the rates tend to zero, which means that there is
condensation at critical density �c=0. This is an essentially
trivial feature of the model which is robust against perturba-
tion by disorder. We therefore focus on positive interaction
exponent �.

It is well known �see, e.g., �2,18�� that the process has a
grand-canonical factorized steady state ��

L with single-site
marginal

�x,��n� =
en�

zx���
k=1

n

gx�k�−1 =
1

zx���
exp�n� − �

k=1

n

Ex�k� ,

�4�

where the chemical potential ��R fixes the particle density.
This holds independently of the distribution of target sites
p�y−x� and for each realization of the ex�k�; i.e., ��

L is a
quenched distribution. The single-site normalization is given
by the partition function

zx��� = �
n=0



exp�n� − �
k=1

n

Ex�k� , �5�

which is strictly increasing and convex in � �11�. The local
density can be calculated as usual as a derivative of the free
energy,

�x��� = ��x� =
� ln zx���

��
, �6�

and is a strictly increasing function of �. By �¯� we denote
the �quenched� expected value with respect to ��

L for fixed
disorder; i.e., fixed realization of the ex�k�. To study the con-
densation transition we have to identify the maximal or criti-
cal chemical potential �c�R, such that zx���� for all
���c.

The single-site marginal �4� is a function of the disorder,
and for b=0 it has the distribution of a geometric random

walk with deterministic drift �. The critical chemical poten-
tial in this case is simply �c=0, and as n→ �x,��n� con-
verges to a log-normal distribution. With nonzero b the drift
term becomes n dependent and a more detailed analysis is
required. With �3� we have, to leading order as n→,

�
k=1

n

Ex�k� � 	�n�x�n� + � b

1 − �
n1−�, � � 1,

b ln n , � = 1,
� �7�

where by the central limit theorem

�x�n� ª
1

	�n
�
k=1

n

ex�k�→N�0,1�, n →  , �8�

converges to a standard Gaussian. Moreover, the process
��n�x�n� :n�N� is a random walk with increments of mean
zero and variance 1. Since the fluctuations of such a process
are of order �n, we have, for all C�R,

P„�x�n� � C for infinitely many n… = 1 �9�

and, for all ��0,C�0,

P„��x�n�� � Cn� for infinitely many n… = 0. �10�

This is a direct consequence of the law of the iterated loga-
rithm �see, e.g., �19�, Corollary 14.8� and is illustrated in Fig.
2. Together with �5� and �7� this implies that zx���� for all
��0 with probability 1. So for almost all �in a probabilistic
sense� realizations of the ex�k� the critical chemical potential
is �c=0 and

zx��c� = �
n=0



exp�− �
k=1

n �ex�k� +
b

k�� . �11�

For certain values of � and b, zx��c�� is possible and �x,�c
can be normalized, which is a necessary condition for a con-
densation transition �10�. We find the following.

b�0. In this case, �7� and �9� imply that there are infi-
nitely many terms in �11� which are bounded below by 1.
Since all terms of the sum are non-negative, it diverges and
zx��c�= with probability 1.
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FIG. 2. �Color online� Typical realizations of �n�x�n� �drawn
with 	2=1� leave the area enclosed by the dashed parabola only
finitely many times, but cross the full line − b

1−�n1−� for ��1 /2
infinitely often �here �=0.75, b=1�.
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b�0. In this case the asymptotic behavior of the terms in
the sum �11� depends on the value of ��0, since the sign of
the exponent can change.

�i� For ��1 /2, n1−���n and �7� is dominated by
	�n�x�n�. Applying �9� with C=0 we get zx��c�= with
probability 1.

�ii� For �=1 /2 both terms in �7� are of the same order
since n1−�	�n and

− �
k=1

n �ex�k� +
b

k� � − 	�n��x�n� +
2b

	
 . �12�

Again, �9� this time with C=2b /	 implies zx��c�= with
probability 1.

�iii� For 0���1 /2 we have n1−���n and �7� is domi-
nated by b

1−�n1−�. We apply �10� for �=1−�−1 /2�0 to see
that the random quantity �x�n� can change the sign of the
exponent in �11� only for finitely many terms in the sum.
Therefore zx��c�� with probability 1 since b

1−�n1−� has a
fixed negative sign in �11�.

Whenever zx��c�= the local critical density

�c
x
ª �x��c� =  �13�

also diverges and there is no condensation transition �see,
e.g., �21�, Lemma I.3.3�. But for b�0 and 0���1 /2 we
have zx��c��, and by the same argument as above it fol-
lows that

�c
x =

1

zx��c�
�
n=0



n exp�− �
k=1

n �ex�k� +
b

k�� �  , �14�

with probability 1, since the factor n in the sum only gives a
logarithmic correction in the exponent. Therefore there is
condensation since the grand-canonical product measures
only exist up to a total density of

�c�L� ª
1

L
�

x��L

�c
x, �15�

which depends on the ex�n� and the size of the lattice, L.
If the actual number of particles, N, is larger than L�c�L�,

all sites except the “slowest” one contain on average
��x�N=�c

x particles. They form the so-called critical back-
ground, since their distribution has nonexponential tails. By
�¯�N we denote the �canonical� expectation conditioned on
the total particle number N. The slowest site, say, y, is de-
fined by �c

y ��c
x for all x�y. By the conservation law it is

required that

��y�N = N − �
x�y

�c
x = O�N�; �16�

i.e., it contains of order N particles and forms the conden-
sate. This interpretation is in accordance with previous re-
sults and has been proved rigorously in �20� in the limit
N→ for the unperturbed model. For the perturbed model
we support this conclusion by Monte Carlo �MC� simula-
tions, some of which are shown in Fig. 3. For fixed L we plot
the stationary background density

�bg ª
1

L
�N − ��y�N� �17�

as a function of the total density �=N /L. For �=0.2, �bg
converges to a critical density �c�L� which is slightly higher
than for the unperturbed model. The overshoot of �bg for
densities close to �c�L� is due to sampling from the canonical
rather than the grand-canonical ensemble, which has been
observed already in �22�. For �=0.8, �bg increases approxi-
mately linearly with �, which is clearly different from the
unperturbed model condensing with critical density 2.77.

For the perturbed system the critical density �c�L� is a
random variable, which according to �15� converges in the
thermodynamic limit to the expected value E��c

x� with re-
spect to the disorder. This is in general hard to calculate �23�,
even for simple choices of ex�n�. Detailed numerical esti-
mates of the distribution of �c

x �some of which are shown in
Fig. 4� indicate that depending on the system parameters the
cumulative tail is either algebraic or consists of an algebraic
part with an exponential cutoff at large values. This can be
explained heuristically by the interplay of the two terms in
�7� that determine the main contributions to the partition
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FIG. 3. �Color online� Background density �bg Eq. �17�, as a
function of N /L for b=1.2. Data for fixed disorder with 	2=1 /12
and L=1024 show condensation for �=0.2 and no condensation for
�=0.8. Data for 	2=0 are shown by open symbols; dotted lines
indicate the critical densities. Data points are averages over 100 MC
samples with errors of the size of the symbols.
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FIG. 4. �Color online� Cumulative tail of the distribution of �c
x

from 5�105 independent numerical calculations of �14� with b=1,
where infinite sums have been cut off at n=106. The solid line
corresponds to a cumulative exponent −1. The data exhibit power-
law decays and for some parameters also large exponential cutoffs:
e.g. 	e−r/105

for �=0.45, 	2=1 fitted by a dashed line. The expec-
tations are finite but may be very large, E��c

x�=1.60 ���, 2.55 ���,
1106 ���.
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function �24�. The exponents of the purely algebraic tails are
smaller than but often close to −1, and the length scale of the
exponential tails can be extremely large �cf. Fig. 4�. There-
fore �c

x has a finite mean which determines the thermody-
namic limit of �15�,

�c ª lim
L→

�c�L� = E��c
x� �  , �18�

but for finite L the �c
x can exhibit large fluctuations, resulting

in high values for �c and slow convergence of �18�.
The interaction encoded in the jump rates of a zero-range

model represents an effective interaction for which space de-
pendence and randomness due to microscopic impurities or
heterogeneities in the case of complex systems has to be

taken into account. We have shown that generic interaction
disorder reduces the critical interaction exponent from �=1
to �=1 /2. In particular, this implies that for the most-studied
case �=1 there is no condensation transition in the presence
of interaction disorder. This case is relevant for the mapping
of the zero-range process to exclusion models where it be-
comes an effective model for domain wall dynamics and
therefore a powerful criterion for phase separation in more
general particle systems �7�. In this mapping the spatial in-
teraction disorder maps onto hopping rates which depend in
a random fashion on the interparticle distance. Then our re-
sults imply that in such heterogeneous finite systems the
change of the critical interaction exponent has to be taken
into account and finite-size effects may play a major role due
to large fluctuations of local critical densities.
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